ADVANCED EV3 PROGRAMMING LESSON

Line Followers: Basic to Proportional

By Droids Robotics

Lesson Objectives

- 1. Evaluate and compare different line followers
- 2. Learn to use the concept of "proportional" to create a proportional line follower

Prerequisites: Basic Line Follower, Color Line Follower, Color Sensor Calibration, Proportional Control, Math Blocks, Data Wires

Which Program Works Best for Which Situation?

Simple Line Follower

- Most basic line follower
- Wiggles a lot due to sharp turns
- Good for rookie teams → need to know loops and switches

3-Stage Follower

- Best for straight lines
- Droids do not recommend this.
 Just learn the proportional line follower.
- Need to know nested switches

Smooth Line Follower

- Almost the same as simple
- Turns are less sharp
- Has trouble on sharp curves
- Good for rookie teams → need to know loops and switches

Proportional Follower

- Uses the "P" in PID
- Makes proportional turns
- Works well on both straight and curved lines
- Good for intermediate to advanced teams → need to know math blocks and data wires

Watch the videos on the next 2 slides to see all four.

Curved Line: Watch Videos

Simple Line Follower

3-Stage Follower

Smooth Line Follower

Proportional Follower

Straight Line: Watch Videos

Simple Line Follower

3-Stage Follower

Smooth Line Follower

Proportional Follower

3 Line Follower Challenges

- Challenge 1: Can you write a simple line follower? Hint: Review Beginner: Basic Line Follower lesson
- Challenge 2: Can you write a smoother line follower? Hint: Change how sharp the turns are in a simple line follower.
- Challenge 3: Can you write a three-stage line follower where the robot moves different 3 different ways (left, right or straight) based on the reading from the color sensor?

A Note About Our Solutions

CALIBRATE:

- The programs use the EV3 Color Sensor in Light Sensor mode
- You will have to calibrate your sensors.
- Please refer to Intermediate: Color Sensor Calibration Lesson

PORTS:

- 7 The Color Sensor is connected to Port 3.
- Please change this for your robot.

WHICH SIDE OF THE LINE:

Please take note of which side of the line the code is written for

Solution 1: Simple Line Follower

Simple Line Follower: The goal of this program is to create a very simple line following programming to follow the left side of a line. This is the most commonly taught program.

Note: This program uses the Color Sensors in Light Mode. This means that you will have to calibrate your sensors. Please read our calibration lessons before continuing! :-)

Solution 2: Smooth Line Follower

Solution 3: Three-Stage Line Follower

Challenge 4: Proportional Line Follower

Challenge 4: Can you write a proportional line follower that changes the angle of the turn depending on how far away from the line the robot is?

Pseudocode:

- Reset the Rotation sensor (Only required for line following for a total distance)
- Compute the error = Distance from line = (Light sensor reading Target Reading)
- Scale the error to determine a correction amount. Adjust your scaling factor to make you robot follow the line more smoothly.
- 4. Use the Correction value (computer in Step 3) to adjust the robot's turn towards the line.

Solution: Proportional Line Follower

Tips

- You will get better results
-if your color sensors are closer to the ground
-if you shield your color sensors
-remember to calibrate

Discussion Guide

Fill in the above with positives and negatives of each technique. Consider if the line follower is best for curved or straight lines. Consider if the robot will wiggle a lot.

Credits

- This tutorial was created by Sanjay Seshan and Arvind Seshan from Droids Robotics.
 - Author's Email: team@droidsrobotics.org
- More lessons at www.ev3lessons.com

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.