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What is WPILib
The WPI Robotics library (WPILib) is a set of software classes that interfaces with the hardware and
software in your FRC robot’s control system. There are classes to handle sensors, motor speed
controllers, the driver station, and a number of other utility functions such as timing and field
management. In addition, WPILib supports many commonly used sensors that are not in the kit,
such as ultrasonic rangefinders.

What's included in the library

There are three versions of the library, one for each supported language. This document specifically
deals with the text-based languages, C++ and Java. There is considerable effort to keep the APIs for
Java and C++ very similar with class names and method names being the same. There are some
differences that reflect language differences such as pointers vs. references, name case
conventions, and some minor differences in functionality. These languages were chosen because
they represent a good level of abstraction for robot programs than previously used languages. The
WPI Robotics Library is designed for maximum extensibility and software reuse with these
languages.

WPILib has a generalized set of features, such as general-purpose counters, to provide support for
custom hardware and devices. The FPGA hardware also allows for interrupt processing to be
dispatched at the task level, instead of as kernel interrupt handlers, reducing the complexity of many
common real-time issues.

Fundamentally, C++ offers the highest performance possible for your robot programs. Java on the
other hand has acceptable performance and includes extensive run-time checking of your program
to make it much easier to debug and detect errors. Those with extensive programming experience
can probably make their own choices, and beginning might do better with Java to take advantage of
the ease of use.
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There is a detailed list of the differences between C++ and Java on Wikipedia available here. Below
is a summary of the differences that will most likely effect robot programs created with WPILib.

Java programming with WPILib

• Java objects must be allocated manually, but are freed automatically when no references
remain.

• References to objects instead of pointers are used. All objects must be allocated with the
new operator and are referenced using the dot (.) operator (e.g. gyro.getAngle()).

• Header files are not necessary and references are automatically resolved as the program is
built.

• Only single inheritance is supported, but interfaces are added to Java to get most of the
benefits that multiple inheritance provides.

• Checks for array subscripts out of bounds, uninitialized references to objects and other
runtime errors that might occur in program development.

• Compiles to byte code for a virtual machine, and must be interpreted.

C++ programming with WPILib

• Memory allocated and freed manually.
• Pointers, references, and local instances of objects.
• Header files and preprocessor used for including declarations in necessary parts of the

program.
• Implements multiple inheritance where a class can be derived from several other classes,

combining the behavior of all the base classes.
• Does not natively check for many common runtime errors.
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• Highest performance on the platform, because it compiles directly to machine code for the
PowerPC processor in the cRIO.
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Choosing a Base Class
The base class is the framework that the robot code is constructed on top of. WPILib offers two
different base classes, as well as a third option which is not technically a separate base class.

Simple Robot

The SimpleRobot class is the simplest to understand as most of the state flow is directly visible in
your program. Your robot program overrides the operatorControl() and autonomous() methods that
are called by the base at the appropriate time. Note that these methods are called only called once
each time the robot enters the appropriate mode and are not automatically terminated. Your code in
the operatorControl method must contain a loop that checks the robot mode in order to keep running
and taking new input from the Driver Station. The autonomous code shown uses a similar loop.
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Iterative Robot

The Iterative Robot base class assists with the most common code structure by handling the state
transitions and looping in the base class instead of in the robot code. For each state (autonomous,
teleop, disabled, test) there are two methods that are called:

• Init methods - The init method for a given state is called each time the corresponding state is
entered (for example, a transition from disabled to teleop will call teleopInit()). Any
initialization code or resetting of variables between modes should be placed here.

• Periodic methods - The periodic method for a given state is called each time the robot
receives a Driver Station packet in the corresponding state, approximately every 20ms. This
means that all of the code placed in each periodic method should finish executing in 20ms or
less. The idea is to put code here that gets values from the driver station and updates the
motors. You can read the joysticks and other driverstation inputs more often, but you’ll only
get the previous value until a new update is received. By synchronizing with the received
updates your program will put less of a load on the cRIO CPU leaving more time for other
tasks such as camera processing.

Command Based Robot
While not strictly a base class, the Command based robot model is a method for creating larger
programs, more easily, that are easier to extend. There is built in support with a number of classes to
make it easy to design your robot, build subsystems, and control interactions between the robot and
the operator interface. In addition it provides a simple mechanism for writing autonomous programs.
The command based model is described in detail in the Command Based Programming manual.
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Sending data from the cRIO to an Arduino
Sometimes it is useful to use a coprocessor to handle operations on some sensors, lights, etc. A
popular processor is the Arduino. This article shows sample code to send some data between the
cRIO and an Arduino. Although it only sends data in one direction (from the cRIO to the Arduino), it
serves as an example of how to do it.

This program sends one of two values (either 72 or 76) from the cRIO to either turn the LED (pin 13
on the Arduino) either on or off. The value is arbitrary and was just part of a larger sample program.
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The cRIO program

The I2C protocol has a master and slave processors or devices. The master controls the bus and
either sends data to a slave or requests data from a slave processor. Slaves cannot initiate
transactions on their own. Each slave processor (or device) has a unique address that the master
processor uses to select it. In this example, the Arduino slave processor recognizes address 84. The
steps are:

1. Initialize the I2C connection on address 84. Because of differences between the
implementation of the library for the cRIO and Arduino (the lower bit of the address selects
either read or write) the cRIO uses address 168. 168 is the address 84 shifted by 1 bit (the
read/write bit).
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2. Use a byte array to fill with the data to send. In this case it's a single byte, either 76 or 72 that
sets the light on or off on the Arduino.

3. Send the data to the Arduino without receiving any data. The parameters "toSend" and "1"
specify a single byte from the "toSend" array. The second set of parameters (null and 0)
would be a byte array and length if the master was expecting the slave to respond with some
data.

The Arduino program

The Arduino program:

1. Sets up an interrupt handler to receive inbound requests as address 84
2. Reads the data turning the light on or off depending on the value.
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The results

A few observations:

1. The timing using Timer.delay() on the cRIO wasn't very precise - likely due to randomness in
the Java scheduler and getting the thread restarted. You can see that between transactions.

2. The program didn't work reliably with an Arduino Uno and seems to work correctly with a
Mega. You can see the output of each transaction with the trace from the logic analyzer.
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Getting your robot to drive with the
RobotDrive class
WPILib provides a RobotDrive object that handles most cases of driving the robot either in
autonomous or teleop modes. It is created with either two or four speed controller objects. There are
methods to drive with either Tank, Arcade, or Mecanum modes either programmatically or directly
from Joysticks.

Note: the examples illustrated in this section are generally correct but have not all been tested on
actual robots. But should serve as a starting point for your projects.

Creating a RobotDrive object with Jaguar speed controllers

Create the RobotDrive object specifying either two or four motor ports. By default the RobotDrive
constructor will create Jaguar class instances attached to each of those ports.

Using other types of speed controllers

You can use RobotDrive with other types of speed controllers as well. In this case you must create
the speed controller objects manually and pass the references or pointers to the RobotDrive
constructor.

These are Java programs but the C++ program is very similar.
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Tank driving with two joysticks

In this example a RobotDrive object is created with 4 default Jaguar speed controllers. In the
operatorControl method the RobotDrive instance tankDrive method is called and it will select the Y-
axis of each of the joysticks by default. There are other versions of the tankDrive method that can be
used to use alternate axis or just numeric values.
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Arcade driving with a single joystick

Similar to the example above a single joystick can be used to do single-joystick driving (called
arcade). In this case, the X-axis is selected by default for the turn axis and the Y-axis is selected for
the speed axis.
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Autonomous driving using the RobotDrive object

The RobotDrive object also has a number of features that makes it ideally suited for autonomous
control. This example illustrates using a gyro for driving in a straight line (the current heading) using
the arcade method for steering. While the robot continues to drive in a straight line the gyro headings
are roughly zero. As the robot veers off in one direction or the other, the gyro headings vary either
positive or negative. This is very convenient since the arcade method turn parameter is also either
positive or negative. The magnitude of the gyro headings sets the rate of the turn, that is more off
zero the gyro heading is, the faster the robot should turn to correct.

This is a perfect use of proportional control where the rate of turn is proportional to the gyro heading
(being off zero). The heading is in values of degrees and can easily get pretty far off, possibly as
much as 10 degrees as the robot drives. But the values for the turn in the arcade method are from
zero to one. To solve this problem, the heading is scaled by a constant to get it in the range required
by the turn parameter of the arcade method. This parameter is called the proportional gain, often
written as kP.

In this particular example the robot is designed such that negative speed values go forward. Also,
not that the the angle from the gyro is written as "-angle". This is because this particular robot turns
in the opposite direction from the gyro corrections and has to be negated to correct that. Your robot
might be different in both cases depending on gearing and motor connections.
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Mecanum driving

The RobotDrive can also handle Mecanum driving. That is using Mecanum wheels on the chassis to
enable the robot to drive in any direction without first turning. This is sometimes called Holonomic
driving.

In this example there are two joysticks controlling the robot. moveStick supplies the direction vector
for the robot, that is which way it should move irrespective of the heading. rotateStick supplies the
rate of rotation in the twist (rudder) axis on the joystick. If you push the moveStick full forward the
robot will move forward, even if it's facing to the left. At the same time, if you rotate the rotateStick,
the robot will spin in the rotation direction with the rotation rate from the amount of twist, while the
robot continues to move forward.
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Using actuators (motors,
servos, and relays)
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Actuator Overview
This section discusses the control of motors and pneumatics through speed controllers, relays, and
WPILib methods.

Types of actuators

The chart shown above outlines the types of actuators which can be controlled through WPILib. The
articles in this section will cover each of these types of actuators and the WPILib methods and
classes that control them.
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Driving motors with speed controller objects
(Victors, Talons and Jaguars)
The WPI Robotics library has extensive support for motor control. There are a number of classes
that represent different types of speed controllers and servos. The WPI Robotics Library currently
supports two classes of speed controllers, PWM based motor controllers (Jaguars, Victors and
Talons) and CAN based motor controllers (Jaguar). WPILIb also contains a composite class called
RobotDrive which allows you to control multiple motors with a single object. This article will cover the
details of PWM motor controllers, CAN controllers and RobotDrive will be covered in separate
articles.

PWM Controllers, brief theory of operation
The acronym PWM stands for Pulse Width Modulation. For the Victor, Talon and Jaguar (using the
PWM input) motor controllers, PWM can refer to both the input signal and the method the controller
uses to control motor speed. To control the speed of the motor the controller must vary the perceived
input voltage of the motor. To do this the controller switches the full input voltage on and off very
quickly, varying the amount of time it is on based on the control signal. Because of the mechanical
and electrical time constants of the types of motors used in FRC this rapid switching produces an
effect equivalent to that of applying a fixed lower voltage (50% switching produces the same effect
as applying ~6V).

The PWM signal the controllers use for an input is a little bit different. Even at the bounds of the
signal range (max forward or max reverse) the signal never approaches a duty cycle of 0% or 100%.
Instead the controllers use a signal with a period of either 5ms or 10ms and a midpoint of 1.5ms. The
Talon and Victor controllers use typical hobby RC controller timing of 1ms to 2ms and the Jaguar
uses and expanded timing of ~.7ms to ~2.3ms.

Raw vs Scaled output values
In general, all of the motor controller classes in WPILib are set up to take a scaled -1.0 to 1.0 value
as the output to an actuator. The PWM module in the FPGA is capable of generating PWM signals
with periods of 5, 10 or 20ms and can vary the pulse width in 255 steps of ~.0065ms each around
the midpoint. The raw values sent to this module are in this 0-255 range with 0 being a special case
which holds the signal low (disabled). The class for each motor controller contains information about
what the typical bound values (min, max and each side of the deadband) are as well as the typical
midpoint. WPILib can then use these values to map the scaled value into the proper range for the
motor controller. This allows for the code to switch seamlessly between different types of controllers
and abstracts out the details of the specific signaling.
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Calibrating Speed Controllers
So if WPILib handles all this scaling, why would you ever need to calibrate your speed controller?
The values WPILib uses for scaling are approximate based on measurement of a number of
samples of each controller type. Due to a variety of factors the timing of an individual speed
controller may vary slightly. In order to definitively eliminate "humming" (midpoint signal interpreted
as slight movement in one direction) and drive the controller all the way to each extreme calibrating
the controllers is still recommended. In general, the calibration procedure for each controller involves
putting the controller into calibration mode then driving the input signal to each extreme, then back to
the midpoint. Precise details for each controller can be found in the User Guides: Talon, Jaguar,
Victor.

PWM and Safe PWM Classes
PWM

The PWM class is the base class for devices that operate on PWM signals and is the connection to
the PWM signal generation hardware in the cRIO. It is not intended to be used directly on a speed
controller or servo. The PWM class has shared code for Victor, Jaguar, Talon, and Servo subclasses
that set the update rate, deadband elimination, and profile shaping of the output.

Safe PWM

The SafePWM class is a subclass of PWM that implements the RobotSafety interface and adds
watchdog capability to each speed controller object. The RobotSafety interface will be discussed
further in the next article.

Constructing a Speed Controller object

Speed controller objects are constructed by passing in either a channel (default module) or a
channel and module. No other parameters are passed into the constructor.

Setting parameters

All of the settable parameters of the motor controllers inherit from the underlying PWM class and are
thus identical across the controllers. The code above shows only a single controller type (Talon) as
an example. There are a number of settable parameters of a PWM object, but only one is
recommended for robot code to modify directly:
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• Deadband Elimination - Set to true to have the scaling algorithms eliminate the controller
deadband. Set to false (default) to leave the controller deadband intact.

Setting Speed

As noted previously, speed controller objects take a single speed parameter varying from -1.0 (full
reverse) to +1.0 (full forward).
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Repeatable Low Power Movement -
Controlling Servos with WPILib
Servo motors are a type of motor which integrates positional feedback into the motor in order to
allow a single motor to perform repeatable, controllable movement, taking position as the input
signal. WPILib provides the capability to control servos which match the common hobby input
specification (PWM signal, 1.0ms-2.0ms pulse width)

Constructing a Servo object

A servo object is constructed by passing either a channel (default module) or module and channel.

Setting Servo Values

There are two methods of setting servo values in WPILib:

• Scaled Value - Sets the servo position using a scaled 0 to 1.0 value. 0 corresponds to one
extreme of the servo and 1.0 corresponds to the other

• Angle - Set the servo position by specifying the angle, in degrees. This method will work for
servos with the same range as the Hitec HS-322HD servo (0 to 170 degrees). Any values
passed to this method outside the specified range will be coerced to the boundary.
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Composite controllers - RobotDrive
The RobotDrive class is designed to simplify the operation of the drive motors based on a model of
the drive train configuration. The program describes the layout of the motors. Then the class can
generate all the speed values to operate the motors for different configurations. For cases that fit the
model, it provides a significant simplification to standard driving code. For more complex cases that
aren’t directly supported by the RobotDrive class it may be subclassed to add additional features or
not used at all.

Create a RobotDrive object with 2 motors

First, create a RobotDrive object specifying the left and right Jaguar motor controllers on the robot,
as shown.

Creating a RobotDrive object with 4 motors

In this case, for a four motor drive all the motors are specified in the constructor.

Creating a RobotDrive object using speed controllers that are already
created
By default, the RobotDrive object created with port numbers as shown in the previous two examples
will allocate Jaguar speed controller objects for each of the motors. If the RobotDrive object creates
the speed controllers, then it will also be responsible for deleting them when the RobotDrive object is
deleted.

In some case (as shown here) you might want to be in control of the speed controller objects, for
example, at times your program might have a need to operate them independently from the
RobotDrive object. Another case is if your robot is not using Jaguar speed controllers. In this case,
allocate the desired speed controller objects and pass them as parameters to the constructor. Your
program will be responsible for deleting the objects when you are done using them.

Operating the motors of the RobotDrive
Once set up, there are methods that can help with driving the robot either from the Driver Station
controls or through programmed operations. These methods are described in the table below.
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Drive(speed, turn) - Designed to take speed and turn values ranging from - 1.0 to 1.0. The speed
values set the robot overall drive speed; with positive values representing forward and negative
values representing backwards. The turn value tries to specify constant radius turns for any drive
speed. Negative values represent left turns and the positive values represent right turns.

TankDrive(leftStick, rightStick) - Takes two joysticks and controls the robot with tank steering
using the y-axis of each joystick. There are also methods that allow you to specify which axis is used
from each stick.

ArcadeDrive(stick) - Takes a joystick and controls the robot with arcade (single stick) steering using
the y-axis of the joystick for forward/backward speed and the x-axis of the joystick for turns. There
are also other methods that allow you to specify different joystick axes.

HolonomicDrive(magnitud e, direction, rotation) - Takes floating point values, the first two are a
direction vector the robot should drive in. The third parameter, rotation, is the independent rate of
rotation while the robot is driving. This is intended for robots with 4 Mecanum wheels independently
controlled.

SetLeftRightMotorSpeeds (leftSpeed, rightSpeed) - Takes two values for the left and right motor
speeds. As with all the other methods, this will control the motors as defined by the constructor.

Inverting the sense of some of the motors

It might turn out that some of the motors used in your RobotDrive object turn in the opposite
direction. This often happens depending on the gearing of the motor and the rest of the drive train. If
this happens, you can use the SetInvertedMotor() method, as shown, to reverse a particular motor.

WPILib programming

Page 25WPILib programming



Driving a robot using Mecanum drive
Mecanum drive is a method of driving using specially designed wheels that allow the robot to drive in
any direction without changing the orientation of the robot. A robot with a conventional drivetrain (4
or six wheels) must turn in the direction it needs to drive. A mecanum robot can move in any
direction without first turning and is called a holonomic drive.
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Mecanum wheels

The wheels shown in this robot have rollers that cause the forces from driving to be applied at a 45
degree angle rather than straight forward as in the case of a conventional drive. You might guess
that varying the speed of the wheels results in travel in any direction. You can look up how mecanum
wheels work on various web sites on the internet.
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Code for driving with mecanum wheels

#include "WPILib.h"/**

* Simplest program to drive a robot with mecanum drive using a single Logitech

* Extreme 3D Pro joystick and 4 drive motors connected as follows:

*   - Digital Sidecar 1:

*     - PWM 1 - Connected to front left drive motor

*     - PWM 2 - Connected to rear left drive motor

*     - PWM 3 - Connected to front right drive motor

*     - PWM 4 - Connected to rear right drive motor

*/class MecanumDefaultCode : public IterativeRobot

{

RobotDrive *m_robotDrive; // RobotDrive object using PWM 1-4 for drive

motors

Joystick *m_driveStick; // Joystick object on USB port 1

(mecanum drive)public:

/**

* Constructor for this "MecanumDefaultCode" Class.

*/

MecanumDefaultCode(void)

{

// Create a RobotDrive object using PWMS 1, 2, 3, and 4

m_robotDrive = new RobotDrive(1, 2, 3, 4);

// Define joystick being used at USB port #1 on the Drivers Station

m_driveStick = new Joystick(1);

// Twist is on Axis 3 for the Extreme 3D Pro

m_driveStick->SetAxisChannel(Joystick::kTwistAxis, 3);

}

/**

* Gets called once for each new packet from the DS.

*/

void TeleopPeriodic(void)

{

m_robotDrive->MecanumDrive_Cartesian(m_driveStick->GetX(), m_driveStick-

>GetY(), m_driveStick->GetTwist());

}

};

START_ROBOT_CLASS(MecanumDefaultCode);

Here's a sample program that shows the minimum code to drive using a single joystick and
mecanum wheels. It uses the RobotDrive object that is available in both C++ and Java so even
though this example is in C++ similar code will work in Java. The idea is to create the RobotDrive
object with 4 PWM ports for the 4 speed controllers on the robot. The joystick XY position represents
a direction vector that the robot should follow regardless of its orientation. The twist axis on the
joystick represents the rate of rotation for the robot while it's driving.

Thanks to FRC Team 2468 in Austin, TX for developing this example.
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Updating the program for field-oriented driving
I would be remiss in not mentioning that is a 4th parameter to the MecanumDrive_Cartesian()
method that is the angle returned from a Gyro sensor. This will adjust the rotation value supplied, in
this case, from the twist axis of the joystick to be relative to the field rather than relative to the robot.
This is particularly useful with mecanum drive since, for the purposes of steering, the robot really has
no front, back or sides. It can go in any direction. Adding the angle in degrees from a gyro object will
cause the robot to move away from the drivers when the joystick is pushed forwards, and towards
the drivers when it is pulled towards them - regardless of what direction the robot is facing!

The use of field-oriented driving makes often makes the robot much easier to drive, especially
compared to a "robot-oriented" drive system where the controls are reversed when the robot is
facing the drivers.

Just remember to get the gyro angle each time MecanumDrive_Caresian() is called.
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Using the motor safety feature
Motor Safety is a mechanism in WPILib that takes the concept of a watchdog and breaks it out into
one watchdog (Motro Safety timer) for each individual actuator. Note that this protection mechanism
is in addition to the System Watchdog which is controlled by the Network Communications code and
the FPGA and will disable all actuator outputs if it does not receive a valid data packet for 125ms.

Motor Safety Purpose
The purpose of the Motor Safety mechanism is the same as the purpose of a watchdog timer, to
disable mechanisms which may cause harm to themselves, people or property if the code locks up
and does not properly update the actuator output. Motor Safety breaks this concept out on a per
actuator basis so that you can appropriately determine where it is necessary and where it is not.
Examples of mechanisms that should have motor safety enabled are systems like drive trains and
arms. If these systems get latched on a particular value they could cause damage to their
environment or themselves. An example of a mechanism that may not need motor safety is a
spinning flywheel for a shooter. If this mechanism gets latched on a particular value it will simply
continue spinning until the robot is disabled. By default Motor Safety is enabled for RobotDrive
objects and disabled for all other speed controllers and servos.

Motor Safety Operation
The Motor Safety feature operates by maintaining a timer that tracks how long it has been since the
feed() method has been called for that actuator. Code in the Driver Station class initiates a
comparison of these timers to the timeout values for any actuator with safety enabled every 5
received packets (100ms nominal). The set() methods of each speed controller class and the set()
and setAngle() methods of the servo class call feed() to indicate that the output of the actuator has
been updated.

Enabling/Disabling Motor Safety

Motor safety can be enabled or disabled on a given actuator, potentially even dynamically within a
program. However, if you determine a mechanism should be protected by motor safety, it is likely
that it should be protected all the time.
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Configuring the Safety timeout

Depending on the mechanism and the structure of your program, you may wish to configure the
timeout length of the motor safety (in seconds). The timeout length is configured on a per actuator
basis and is not a global setting. The default (and minimum useful) value is 100ms.
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On/Off control of motors and other
mechanisms - Relays
For On/Off control of motors or other mechanisms such as solenoids, lights or other custom circuits,
WPILib has built in support for relay outputs designed to interface to the Spike H-Bridge Relay from
VEX Robotics. These devices utilize a 3-pin output (GND, forward, reverse) to independently control
the state of two relays connected in an H-Bridge configuration. This allows the relay to provide power
to the outputs in either polarity or turn both outputs on at the same time.

Relay connection overview
The cRIO provides the connections necessary to wire IFI spikes via the relay outputs on the digital
breakout board. The breakout board provides a total of sixteen outputs, eight forward and eight
reverse. The forward output signal is sent over the pin farthest from the edge of the breakout board,
labeled as output A, while the reverse signal output is sent over the center pin, labeled output B. The
final pin is a ground connection.

Relay Directions in WPILib
Within WPILib relays can be set to kBothDirections (reversible motor or two direction solenoid),
kForwardOnly (uses only the forward pin), or kReverseOnly (uses only the reverse pin). If a value is
not input for direction, it defaults to kBothDirections . This determines which methods in the Relay
class can be used with a particular instance.

Setting Relay Directions

Relay state is set using the set() method. The method takes as a parameter an enumeration with the
following values:

• kOff - Turns both relay outputs off
• kForward - Sets the relay to forward (M+ @ 12V, M- @ GND)
• kReverse - Sets the relay to reverse (M+ @ GND, M- @ 12V)
• KOn - Sets both relay outputs on (M+ @ 12V, M- @ 12V). Note that if the relay direction is

set such that only the forward or reverse pins are enabled this method will be equivalent to

WPILib programming

Page 32WPILib programming



kForward or kReverse, however it is not recommended to use kOn in this manner as it may
lead to confusion if the relay is later changed to use kBothDirections. Using kForward and
kReverse is unambiguous regardless of the direction setting.

WPILib programming

Page 33WPILib programming



Operating a compressor for pneumatics
The Compressor class is designed to operate any FRC supplied compressor on the robot. A
Compressor object is constructed with 2 input/output ports:

• The Digital Relay output port connected to the Spike relay that controls the power to the
compressor. (A digital output or Solenoid module port alone doesn’t supply enough current to
operate the compressor.)

• The Digital input port connected to the pressure switch that monitors the accumulator pressure.

The Compressor class will automatically create a task that runs in the background and twice a
second turns the compressor on or off based on the pressure switch value. If the system pressure is
above the high set point of the switch, the compressor turns off. If the pressure is below the low set
point, the compressor turns on.

Starting the compressor

To use the Compressor class create an instance of the Compressor object and use the Start()
method. This is typically done in the constructor for your Robot Program. Once started, it will
continue to run on its own with no further programming necessary. If you do have an application
where the compressor should be turned off, possibly during some particular phase of the game play,
you can stop and restart the compressor using the Stop() and Start() methods.

The compressor class will create instances of the DigitalInput and Relay objects internally to read
the pressure switch and operate the Spike relay.

Shown in the example is some C++ code that implements a compressor with a Spike relay
connected to Relay port 2 and the pressure switch connected to digital input port 4. Both of these
ports are connected to the primary digital input module.
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Operating pneumatic cylinders - Solenoids
There are two ways to connect and operate pneumatic solenoid valves to trigger pneumatic cylinder
movement using the current control system. One option is to hook the solenoids up to a Spike relay;
to learn how to utilize solenoids connected in this manner in code see the article on Relays. The
second option is to connect the solenoids to a solenoid breakout board on top of a NI 9472 Digital
Sourcing module in the cRIO (slot 3). To use these solenoids in code, use the WPILib "Solenoid"
and/or "Double Solenoid" classes, detailed below.

Solenoid Overview
The pneumatic solenoid valves used in FRC are internally piloted valves. For more details on the
operation of internally piloted solenoid valves, see this Wikipedia article. One consequence of this
type of valve is that there is a minimum input pressure required for the valve to actuate. For many of
the valves commonly used by FRC teams this is between 20 and 30 psi. Looking at the LEDs on the
9472 module itself is the best way to verify that code is behaving the way you expect in order to
eliminate electrical or air pressure input issues.

Single acting solenoids apply or vent pressure from a single output port. They are typically used
either when an external force will provide the return action of the cylinder (spring, gravity, separate
mechanism) or in pairs to act as a double solenoid. A double solenoid switches air flow between two
output ports (many also have a center position where neither output is vented or connected to the
input). Double solenoid valves are commonly used when you wish to control both the extend and
retract actions of a cylinder using air pressure. Double solenoid valves have two electrical inputs
which connect back to two separate channels on the solenoid breakout.

Note on port numbering
The port numbers on the Solenoid class range from 1-8 as printed on the Solenoid Breakout Board.
The NI 9472 indicator lights are numbered 0-7 for the 8 ports, which is different numbering than used
by the class or the Solenoid Breakout Board silk screen.

Single Solenoids in WPILib

Single solenoids in WPILib are controlled using the Solenoid class. To construct a Solenoid object,
simply pass the desired port number or module and port number to the constructor. To set the value
of the solenoid call set(true) to enable or set(false) to disable the solenoid output.
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Double Solenoids in WPILib

Double solenoids are controlled by the DoubleSolenoid class in WPILib. These are constructed
similarly to the single solenoid but there are now two port numbers to pass to the constructor, a
forward channel (first) and a reverse channel (second). The state of the valve can then be set to kOff
(neither output activated), kForward (forward channel enabled) or kReverse (reverse channel
enabled).
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WPILib sensors
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Using limit switches to control behavior
Limit switches are often used to control mechanisms on robots. While limit switches are simple to
use, they only can sense a single position of a moving part. This makes them ideal for ensuring that
movement doesn't exceed some limit but not so good at controlling the speed of the movement as it
approaches the limit. For example, a rotational shoulder joint on a robot arm would best be
controlled using a potentiometer or an absolute encoder, the limit switch could make sure that if the
potentiometer ever failed, the limit switch would stop the robot from going to far and causing
damage.
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What values are provided by the limit switch

Limit switches can have "normally opened" or "normally closed" outputs. The usual way of wiring the
switch is between a digital input signal connection and ground. The digital input has pull-up resistors
that will make the input be high (1 value) when the switch is open, but when the switch closes the
value goes to 0 since the input is now connected to ground. The switch shown here has both
normally open and normally closed outputs.
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Polling waiting for a switch to close

You can write a very simple piece of code that just reads the limit switch over and over again waiting
until it detects that its value transitions from 1 (opened) to 0 (closed). While this works, it's usually
impractical for the program to be able to just wait for the switch to operate and not be doing anything
else, like responding to joystick input. This example shows the fundamental use of the switch, but
while the program is waiting, nothing else is happening.

Command-based program to operate until limit switch closed

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {

public ArmUp() {

}

protected void initialize() {

arm.armUp();

}

protected void execute() {

}

protected boolean isFinished() {

return arm.isSwitchSet();
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}

protected void end() {

arm.armStop();

}

protected void interrupted() {

end();

}

}

Commands call their execute() and isFinished() methods about 50 times per second, or at a rate of
every 20ms. A command that will operate a motor until the limit switch is closed can read the digital
input value in the isFinished() method and return true when the switch changes to the correct state.
Then the command can stop the motor.

Remember, the mechanism (an Arm in this case) has some inertia and won't stop
immediately so it's important to make sure things don't break while the arm is slowing.

Using a counter to detect the closing of the switch

package edu.wpi.first.wpilibj.templates.subsystems;

import edu.wpi.first.wpilibj.Counter;

import edu.wpi.first.wpilibj.DigitalInput;

import edu.wpi.first.wpilibj.SpeedController;

import edu.wpi.first.wpilibj.Victor;

import edu.wpi.first.wpilibj.command.Subsystem;

public class Arm extends Subsystem {

DigitalInput limitSwitch = new DigitalInput(1);

SpeedController armMotor = new Victor(1);

Counter counter = new Counter(limitSwitch);

public boolean isSwitchSet() {

return counter.get() > 0;

}

public void initializeCounter() {

counter.reset();

}

public void armUp() {

armMotor.set(0.5);

}

public void armDown() {

armMotor.set(-0.5);

}
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public void armStop() {

armMotor.set(0.0);

}

protected void initDefaultCommand() {

}

}

It's possible that a limit switch might close then open again as a mechanism moves past the switch.
If the closure is fast enough the program might not notice that the switch closed. An alternative
method of catching the switch closing is use a Counter object. Since counters are implemented in
hardware, it will be able to capture the closing of the fastest switches and increment it's count. Then
the program can simply notice that the count has increased and take whatever steps are needed to
do the operation.

Above is a subsystem that uses a counter to watch the limit switch and wait for the value to change.
When it does, the counter will increment and that can be watched in a command.

Create a command that uses the counter to detect switch closing

package edu.wpi.first.wpilibj.templates.commands;

public class ArmUp extends CommandBase {

public ArmUp() {

}

protected void initialize() {

arm.initializeCounter();

arm.armUp();

}

protected void execute() {

}

protected boolean isFinished() {

return arm.isSwitchSet();

}

protected void end() {

arm.armStop();

}

protected void interrupted() {

end();

}

}
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This command initializes the counter in the above subsystem then starts the motor moving. It then
tests the counter value in the isFinished() method waiting for it to count the limit switch changing.
When it does, the arm is stopped. By using a hardware counter, a switch that might close then open
very quickly can still be caught by the program.
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WPILib Sensor Overview
The WPI Robotics Library supports the sensors that are supplied in the FRC kit of parts, as well as
many commonly used sensors available to FIRST teams through industrial and hobby robotics
suppliers.

Types of supported sensors

On the cRIO, the FPGA implements all the high speed measurements through dedicated hardware
ensuring accurate measurements no matter how many sensors and motors are connected to the
robot. This is an improvement over previous systems, which required complex real time software
routines. The library natively supports sensors in the categories shown below:

• Wheel/motor position measurement - Gear-tooth sensors, encoders, analog encoders, and
potentiometers

• Robot orientation - Compass, gyro, accelerometer, ultrasonic rangefinder
• Generic - Pulse output Counters, analog, I2C, SPI, Serial, Digital input

There are many features in the WPI Robotics Library that make it easy to implement sensors that
don’t have prewritten classes. For example, general purpose counters can measure period and
count from any device generating output pulses. Another example is a generalized interrupt facility to
catch high speed events without polling and potentially missing them.
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Accelerometers - measuring acceleration and
tilt
Accelerometers measure acceleration in one or more axis. One typical usage is to measure robot
acceleration. Another common usage is to measure robot tilt, in this case it measures the
acceleration due to gravity.

Two-axis analog accelerometer

A commonly used part (shown in the picture above) is a two-axis accelerometer. This device can
provide acceleration data in the X and Y-axes relative to the circuit board. The WPI Robotics Library
you treats it as two separate devices, one for the X- axis and the other for the Y-axis. The
accelerometer can be used as a tilt sensor – by measuring the acceleration of gravity. In this case,
turning the device on the side would indicate 1000 milliGs or one G. Shown is a 2-axis
accelerometer board connected to two analog inputs on the robot. Note that this is not the
accelerometer provided in the 2014 KOP.
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Analog Accelerometer code example

A brief code example is shown above which illustrates how to set up an analog accelerometer
connected to analog module 1, channel 1. The sensitivity and zero voltages were set according to
the datasheet (assumed part is ADXL193, zero voltage set to ideal. Would need to determine actual
offset of specific part being used).

ADXL345 Accelerometer

The ADXL345 is a three axis accelerometer provided as part of the sensor board in the 2012-2014
KOP. The ADXL345 is capable of measuring accelerations up to +/- 16g and communicates over
I2C or SPI. Wiring instructions for either protocol can be found in the FRC component datasheet.
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Additional information can be found in the Analog Devices ADXL345 datasheet. WPILib provides a
separate class for each protocol which handles the details of setting up the bus and enabling the
sensor.

ADXL345 Code Example

A brief code example is shown above illustrating the use of the ADXL345 connected to the I2C bus
on Digital Module 1. The accelerometer has been set to operate in +/- 2g mode. The example
illustrates both the single axis and all axes methods of getting the sensor values, in practice select
one or the other depending on whether you need a single axis or all three. SPI operation is similar,
refer to the Javadoc/Doxygen for the ADXL345_SPI class for additional details on using the sensor
over SPI.
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Gyros to control robot driving direction
Gyros typically in the FIRST kit of parts are provided by Analog Devices, and are actually angular
rate sensors. The output voltage is proportional to the rate of rotation of the axis perpendicular to the
top package surface of the gyro chip. The value is expressed in mV/°/second (degrees/second or
rotation expressed as a voltage). By integrating (summing) the rate output over time, the system can
derive the relative heading of the robot.

Another important specification for the gyro is its full-scale range. Gyros with high full-scale ranges
can measure fast rotation without “pinning” the output. The scale is much larger so faster rotation
rates can be read, but there is less resolution due to a much larger range of values spread over the
same number of bits of digital to analog input. In selecting a gyro, you would ideally pick the one that
had a full-scale range that matched the fastest rate of rotation your robot would experience. This
would yield the highest accuracy possible, provided the robot never exceeded that range.

Using the Gyro class

The Gyro object should be created in the constructor of the RobotBase derived object. When the
Gyro object is used, it will go through a calibration period to measure the offset of the rate output
while the robot is at rest to minimize drift. This requires that the robot be stationary and the gyro is
unusable until the calibration is complete.

Once initialized, the GetAngle() (or getAngle() in Java) method of the Gyro object will return the
number of degrees of rotation (heading) as a positive or negative number relative to the robot’s
position during the calibration period. The zero heading can be reset at any time by calling the
Reset() (reset() in Java) method on the Gyro object.

See the code samples below for an idea of how to use the Gyro objects.
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Setting Gyro sensitivity
The Gyro class defaults to the settings required for the 250°/sec gyro that was delivered by FIRST in
the 2012-2014 Kit of Parts (ADW22307). It is important to check the documentation included with the
gyro to ensure that you have the correct sensitivity setting.

To change gyro types call the SetSensitivity(float sensitivity) method (or setSensitivity(double
sensitivity) in Java) and pass it the sensitivity in volts/°/sec. Take note that the units are typically
specified in mV (volts / 1000) in the spec sheets. For example, a sensitivity of 12.5 mV/°/sec would
require a SetSensitivity() (setSensitivity() in Java) parameter value of 0.0125.
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Using a gyro to drive straight
The following example programs cause the robot to drive in a straight line using the gyro sensor in
combination with the RobotDrive class. The RobotDrive.Drive method takes the speed and the
turn rate as arguments; where both vary from -1.0 to 1.0. The gyro returns a value indicating the
number of degrees positive or negative the robot deviated from its initial heading. As long as the
robot continues to go straight, the heading will be zero. This example uses the gyro to keep the robot
on course by modifying the turn parameter of the Drive method.

The angle is multiplied by a proportional scaling constant (Kp) to scale it for the speed of the robot
drive. This factor is called the proportional constant or loop gain. Increasing Kp will cause the robot
to correct more quickly (but too high and it will oscillate). Decreasing the value will cause the robot
correct more slowly (possibly never reaching the desired heading). This is known as proportional
control, and is discussed further in the PID control section of the advanced programming section.

Sample Java program for driving straight
This is a sample Java program that drives in a straight line. See the comments in the C++ example
(previous step) for an explanation of its operation.
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package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.Gyro;

import edu.wpi.first.wpilibj.RobotDrive;

import edu.wpi.first.wpilibj.SimpleRobot;

import edu.wpi.first.wpilibj.Timer;

public class GyroSample extends SimpleRobot {

private RobotDrive myRobot; // robot drive system

private Gyro gyro;

double Kp = 0.03;

public GyroSample() {

gyro = new Gyro(1);             // Gyro on Analog Channel 1

myRobot = new RobotDrive(1,2);  // Drive train jaguars on PWM 1 and 2

myRobot.setExpiration(0.1);

}

public void autonomous() {

gyro.reset();

while (isAutonomous()) {

double angle = gyro.getAngle(); // get current heading

myRobot.drive(-1.0, -angle*Kp); // drive towards heading 0

Timer.delay(0.004);

}

myRobot.drive(0.0, 0.0);

}

}

Thanks to Joe Ross from FRC team 330 for help with this example.
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Determine robot orientation with a compass
A compass uses the earth’s magnetic field to determine the heading of the robot.

Placement Notes
This field is relatively weak causing the compass to be susceptible to interference from other
magnetic fields such as those generated by the motors and electronics on your robot. If you decide
to use a compass, be sure to mount it far away from interfering electronics and verify its accuracy.

HiTechnic Compass

WPILib directly supports one compass, the HiTechnic Compass. This part connects to the I2C port
on the Digital Sidecar. It is important to note that there is only one I2C port on each of these
modules.

Code Example

The compass is constructed by passing in the Digital Module number that it is connected to. The
current heading of the compass can then be retrieved by calling getAngle() in Java or GetAngle() in
C++.
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Measuring robot distance to a surface using
Ultrasonic sensors
Ultrasonic sensors are a common way to find the distance from a robot to the nearest surface

Ultrasonic rangefinders
Ultrasonic rangefinders use the travel time of an ultrasonic pulse to determine distance to the
nearest object within the sensing cone. There are a variety of different ways that various ultrasonic
sensors communicate the measurement result including:

• Ping-Response (ex. Devantech SRF04, VEX Ultrasonic Rangefinder)
• Analog (ex. Maxbotix LV-MaxSonar-EZ1)
• I2C (ex. Maxbotix I2CXL-MaxSonar-EZ2)

Ping-Response Ultrasonic sensors

To aid in the sue of Ping-Response Ultrasonic sensors such as the Devantech SRF04 pictured
above, WPILib contains an Ultrasonic class. This type of sensor has two transducers, a speaker that
sends a burst of ultrasonic sound, and a microphone that listens for the sound to be reflected off of a
nearby object. It requires two connections to the cRIO, one that initiates the ping and the other that
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tells when the sound is received. The Ultrasonic object measures the time between the transmission
and the reception of the echo.

Creating an Ultrasonic object

Both the Echo Pulse Output and the Trigger Pulse Input have to be connected to digital I/O ports on
a Digital Sidecar. When creating the Ultrasonic object, specify which channels it is connected to in
the constructor, as shown in the examples above. In this case,
ULTRASONIC_ECHO_PULSE_OUTPUT and ULTRASONIC_TRIGGER_PULSE_INPUT are two
constants that are defined to be the digital I/O port numbers. Do not use the ultrasonic class for
ultrasonic rangefinders that do not have these connections. Instead, use the appropriate class for the
sensor, such as an AnalogChannel object for an ultrasonic sensor that returns the range as an
analog voltage.

Reading the distance

The following two examples read the range on an ultrasonic sensor connected to the output port
ULTRASONIC_PING and the input port ULTRASONIC_ECHO.

Analog Rangefinders
Many ultrasonic rangefinders return the range as an analog voltage. To get the distance you multiply
the analog voltage by the sensitivity or scale factor (typically in inches/V or inches/mV). To use this
type of sensor with WPILib you can either create it as an Analog Channela nd perform the scaling
directly in your robot code, or you can write a class that will perform the scaling for you each time
you request a measurement.
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I2C and other Digital Rangefinders
Rangefinders that communicate digitally over I2C, SPI, or Serial may also be used with the cRIO
though no specific classes for these devices are provided through WPILib. Use the appropriate
communication class based on the bus in use and refer to the datasheet for the part to determine
what data or requests to send the device and what format the received data will be in.

WPILib programming

Page 55WPILib programming



Using Counters
Counter objects are extremely flexible elements that can count input from either a digital input signal
or an analog trigger.

Counter Overview

There are 8 Up/Down Counter units contained in the FPGA which can each operate in a number of
modes based on the type of input signal:

• Gear-tooth/Pulse Width mode - Enables up/down counting based on the width of an input
pulse. This is used to implement the GearTooth sensor class with direction sensing.

• Semi-period mode - Counts the period of a portion of the input signal. This mode is used by
the Ultrasonic class to measure the time of flight of the echo pulse.

• External Direction mode - Can count edges of a signal on one input with the direction (up/
down) determined by a second input

• "Normal mode"/Two Pulse mode - Can count edges from 2 independent sources (1 up, 1
down)
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Gear-Tooth Mode and GearTooth Sensors

Gear-tooth sensors are designed to be mounted adjacent to spinning ferrous gear or sprocket teeth
and detect whenever a tooth passes. The gear-tooth sensor is a Hall-effect device that uses a
magnet and solid-state device that can measure changes in the field caused by the passing teeth.
The picture above shows a gear-tooth sensor mounted to measure a metal gear rotation. Notice that
a metal gear is attached to the plastic gear. The gear tooth sensor needs a ferrous material passing
by it to detect rotation.

The Gear-Tooth mode of the FPGA counter is designed to work with gear-tooth sensors which
indicate the direction of rotation by changing the length of the pulse they emit as each tooth passes
such as the ATS651 provided in the 2006 FRC KOP.

Semi-Period mode

The semi-period mode of the counter will measure the pulse width of either a high pulse (rising edge
to falling edge) or a low pulse (falling edge to rising edge) on a single source (the Up Source). Call
setSemiPeriodMode(true) to measure high pulses and setSemiPeriodMode(false) to measure low
pulses. In either case, call getPeriod() to obtain the length of the last measured pulse (in seconds).
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External Direction mode
The external direction mode of the counter counts edges on one source (the Up Source) and uses
the other source (the Down Source) to determine direction. The most common usage of this mode is
quadrature decoding in 1x and 2x mode. This use case is handled by the Encoder class which sets
up an internal Counter object, and is covered in the next article Measuring rotation of a wheel or
other shaft using Encoders.

Normal mode

The "normal mode" of the counter, also known as Up/Down mode or Two Pulse mode, counts pulses
occurring on up to two separate sources, one source for Up and one source for Down. A common
use case of this mode is using a single source (the Up Source) with a reflective sensor or hall effect
sensor as a single direction encoder. The code example above shows an alternate method of setting
up the Counter sources, this method is valid for any of the modes. The method shown in the Semi-
Period mode example is also perfectly valid for all modes of the counter including the Normal Mode.

Counter Settings

There are a few different parameters that can be set to control various aspects of the counter
behavior:

• Max Period - The maximum period (in seconds) where the device is still considered moving.
This value is used to determine the state of the getStopped() method and effect the output of
the getPeriod() and getRate() methods.

• Update When Empty - Setting this to false will keep the most recent period on the counter
when the counter is determined to be stalled (based on the Max Period described above).
Setting this parameter to True will return 0 as the period of a stalled counter.

• Reverse Direction - Valid in external direction mode only. Setting this parameter to true
reverses the counting direction of the external direction mode of the counter.

• Samples to Average - Sets the number of samples to average when determining the period.
Averaging may be desired to account for mechanical imperfections (such as unevenly
spaced reflectors when using a reflective sensor as an encoder) or as oversampling to
increase resolution. Valid values are 1 to 127 samples.

WPILib programming

Page 58WPILib programming



• Distance Per Pulse - Sets the multiplier used to determine distance from count when using
the getDistance() method.

Starting, Stopping, and Resetting the counter

Before a counter object will begin counting, the start() method must be called to start the counter. To
stop the counter, call the stop() method. To reset the counter value to 0 call reset().

Getting Counter Values

The following values can be retrieved from the counter:

• Count - The current count. May be reset by calling reset()
• Distance - The current distance reading from the counter. This is the count multiplied by the

Distance Per Count scale factor.
• Period - The current period of the counter in seconds. If the counter is stopped this value

may return 0, depending on the setting of the Update When Empty parameter.
• Rate - The current rate of the counter in units/sec. It is calculated using the DistancePerPulse

divided by the period. If the counter is stopped this value may return Inf or NaN, depending
on language.

• Direction - The direction of the last value change (true for Up, false for Down)
• Stopped - If the counter is currently stopped (period has exceeded Max Period)
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Measuring rotation of a wheel or other shaft
using encoders
Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically used to
measure the distance a wheel has turned which can be translated into the distance the robot has
traveled. The distance traveled over a measured period of time represents the speed of the robot,
and is another common use for encoders. Encoders can also directly measure the rate of rotation by
determining the time between pulses. This article covers the use of quadrature encoders (defined
below) For non-quadrature incremental encoders, see the article on counters. For absolute encoders
the appropriate article will depend on the input type (most commonly analog, I2C or SPI).

Quadrature Encoder Overview

A quadrature encoder is a device for measuring shaft rotation that consists of two sensing elements
90 degrees out of phase. The most common type of encoder typically used in FRC is an optical
encoder which uses one or more light sources (LEDs) pointed at a striped or slit code wheel and two
detectors 90 degrees apart (these may be located opposite the LED to detect transmission or on the
same side as the LED to measure reflection). The phase difference between the signals can be used
to detect the direction of rotation by determining which signal is "leading" the other.
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Encoders vs. Counters

The FRC FPGA has 4 Quadrature decoder modules which can do 4x decoding of a 2 channel
quadrature encoder signal. This means that the module is counting both the rising and falling edges
of each pulse on each of the two channels to yield 4 ticks for every stripe on the codewheel. The
quadrature decoder module is also capable of handling an index channel which is a feature on some
encoders that outputs one pulse per revolution. The counter FPGA modules are used for 1x or 2x
decoding where the rising or rising and falling edges of one channel are counted and the second
channel is used to determine direction. In either case it is recommended to use the Encoder class for
all quadrature encoders, the class will assign the appropriate FPGA module based on the encoding
type you choose.

Sampling Modes
The encoder class has 3 sampling modes: 1x, 2x and 4x. The 1x and 2x mode count the rising or the
rising and falling edges respectively on a single channel and use the B channel to determine
direction only. The 4x mode counts all 4 edges on both channels. This means that the 4x mode will
have a higher positional accuracy (4 times as many ticks per rotation as 1x) but will also have more
jitter in the rate output due to mechanical deficiencies (imperfect phase difference, imperfect striping)
as well as running into the timing limits of the FPGA. For sensing rate, particularly at high RPM,
using 1x or 2x decoding and increasing the number of samples to average may substantially help
reduce jitter. Also keep in mind that the FPGA has 4 quadrature decoding modules (used for 4x
decoding) and 8 counter modules (used for 1x and 2x decoding as well as Counter objects),
depending on the number of encoders on your robot you may have to allocate the quadrature
decoder modules to only the places where you need the most positional accuracy.
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Constructing an Encoder object

There are a number of constructors you may use to construct encoders, but the most common is
shown above. In the example, 1 and 2 are the port numbers for the two digital inputs on the default
module and true tells the encoder to not invert the counting direction. The sensed direction could
depend on how the encoder is mounted relative to the shaft being measured. The k4X makes sure
that an encoder module from the FPGA is used and 4X accuracy is obtained.

Setting Encoder Parameters

The following parameters of the encoder class may be set through the code:

• Max Period - The maximum period (in seconds) where the device is still considered moving.
This value is used to determine the state of the getStopped() method and effect the output of
the getPeriod() and getRate() methods. This is the time between pulses on an individual
channel (scale factor is accounted for). It is recommended to use the Min Rate parameter
instead as it accounts for the distance per pulse, allowing you to set the rate in engineering
units.

• Min Rate - Sets the minimum rate before the device is considered stopped. This
compensates for both scale factor and distance per pulse and therefore should be entered in
engineering units (RPM, RPS, Degrees/sec, In/s, etc)

• Distance Per Pulse - Sets the scale factor between pulses and distance. The library already
accounts for the decoding scale factor (1x, 2x, 4x) separately so this value should be set
exclusively based on the encoder's Pulses per Revolution and any gearing following the
encoder.

• Reverse Direction - Sets the direction the encoder counts, used to flip the direction if the
encoder mounting makes the default counting direction unintuitive.

• Samples to Average - Sets the number of samples to average when determining the period.
Averaging may be desired to account for mechanical imperfections (such as unevenly
spaced reflectors when using a reflective sensor as an encoder) or as oversampling to
increase resolution. Valid values are 1 to 127 samples.

WPILib programming

Page 62WPILib programming



Starting, Stopping and Resetting Encoders

Before an encoder object will begin counting, the start() method must be called to start the encoder.
To stop the encoder, call the stop() method. To reset the encoder value to 0 call reset().

Getting Encoder Values

The following values can be retrieved from the encoder:

• Count - The current count. May be reset by calling reset().
• Raw Count - The count without compensation for decoding scale factor.
• Distance - The current distance reading from the counter. This is the count multiplied by the

Distance Per Count scale factor.
• Period - The current period of the counter in seconds. If the counter is stopped this value

may return 0. This is deprecated, it is recommended to use rate instead.
• Rate - The current rate of the counter in units/sec. It is calculated using the DistancePerPulse

divided by the period. If the counter is stopped this value may return Inf or NaN, depending
on language.

• Direction - The direction of the last value change (true for Up, false for Down)
• Stopped - If the counter is currently stopped (period has exceeded Max Period)
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Analog inputs
The NI 9201 Analog to Digital module has a number of features not available on simpler controllers.
It will automatically sample the analog channels in a round robin fashion, providing a combined
sample rate of 500 ks/s (500,000 samples / second). These channels can be optionally oversampled
and averaged to provide the value that is used by the program. There are raw integer and floating
point voltage outputs available in addition to the averaged values. The diagram below outlines this
process.
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Analog System Diagram

When the system averages a number of samples, the division results in a fractional part of the
answer that is lost in producing the integer valued result. Oversampling is a technique where extra
samples are summed, but not divided down to produce the average. Suppose the system were
oversampling by 16 times – that would mean that the values returned were actually 16 times the
average. Using the oversampled value gives additional precision in the returned value.

Constructing an Analog Channel

Oversampling and Averaging

The number of averaged and oversampled values are always powers of two (number of bits of
oversampling/averaging). Therefore the number of oversampled or averaged values is two ^ bits,
where ‘bits’ is passed to the methods: SetOversampleBits(bits) and SetAverageBits(bits). The actual
rate that values are produced from the analog input channel is reduced by the number of averaged
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and oversampled values. For example, setting the number of oversampled bits to 4 and the average
bits to 2 would reduce the number of delivered samples by 16x and 4x, or 64x total.

Code example

The above code shows an example of how to get and set the number of oversample bits and
average bits on an analog channel

Sample Rate

The sample rate is fixed per analog I/O module, so all the channels on a given module must sample
at the same rate. However, the averaging and oversampling rates can be changed for each channel.
The use of some sensors (currently just the Gyro) will set the sample rate to a specific value for the
module it is connected to. The example above shows setting the sample rate for a module to the
default value of 50,000 samples per channel per second (400kS/s total).

Reading Analog Values

There are a number of options for reading Analog input values from an analog channel:

1. Raw value - The instantaneous raw 12-bit (0-4096) value representing the full -10V to 10V
range of the ADC. The typical 0V-5V swing will provide values in the approximate range
0-1024. Note that this method does not take into account the calibration information stored in
the module.

2. Voltage - The instantaneous voltage value of the channel. This method takes into account
the calibration information stored in the 9201 module to convert the raw value to a voltage.

3. Average Raw value - The raw, unscaled value output from the oversampling and averaging
engine. See above for information on the effect of oversampling and averaging and how to
set the number of bits for each.

4. Average Voltage - The scaled voltage value output from the oversampling and averaging
engine. This method uses the stored calibration information to convert the raw average value
into a voltage.
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5. Accumulator - The purpose and use of the accumulator is discussed below.

Accumulator
The analog accumulator is a part of the FPGA that acts as an integrator for analog signals, summing
the value over time. A common example of where this behavior is desired is for a gyro. A gyro
outputs an analog signal corresponding to the rate of rotation, however the measurement commonly
desired is heading or total rotational displacement. To get heading from rate, you perform an
integration. By performing this operation at the hardware level it can occur much quicker than if you
were to attempt to implement it in the robot code. The accumulator can also apply an offset to the
analog value before adding it to the accumulator. Returning to the gyro example, most gyros output
a voltage of 1/2 of the full scale when not rotating and vary the voltage above and below tat
reference to indicate direction of rotation.

Setting up an accumulator

There are two accumulators implemented in the FPGA, connected to channels 0 and 1 of Analog
Module 1. Any device which you wish to use with the analog accumulator must be attached to one of
these two channels. There are no mandatory parameters that must be set to use the accumulator,
however depending on the device you may wish to set some or all of the following:

1. Accumulator Initial Value - This is the raw value the accumulator returns to when reset. It is
added to the output of the hardware accumulator before the value is returned to the code.

2. Accumulator Center - This raw value is subtracted from each sample before the sample is
applied to the accumulator. Note that the accumulator is after the oversample and averaging
engine in the pipeline so oversampling will affect the appropriate value for this parameter.

3. Accumulator Deadband - The raw value deadband around the center point where the
accumulator will treat the sample as 0.

4. Accumulator Reset - Resets the value of the accumulator to the Initial Value (0 by default).

Reading from an Accumulator

Two separate pieces of information can be read from the accumulator in three total ways:
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1. Count - The number of samples that have been added to the accumulator since the last
reset.

2. Value - The value currently in the accumulator
3. Combined - Retrieve the count and value together to assure synchronization. This should be

used if you are going to use the count and value in the same calculation such as averaging.
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Potentiometers to measure joint angle or
linear motion
Potentiometers are a common analog sensor used to measure absolute angular rotation or linear
motion (string pots) of a mechanism. A potentiometer is a three terminal device that uses a moving
contact to from a variable resistor divider. When the outer contacts are connected to 5V and ground
and the variable contact is connected to an analog input, the analog input will see an analog voltage
that varies as the potentiometer is turned.

Potentiometer Taper
The taper of a potentiometer describes the relationship between the position and the resistance. The
two common tapers are linear and logarithmic. A linear taper potentiometer will vary the resistance
proportionally to the rotation of the shaft; For example, the shaft will measure 50% of the resistave
value at the midpoint of the rotation. A logarithmic taper potentiometer will vary the resistance
logarithmically with the rotation of the shaft. Logarithmic potentiometers are commonly used in audio
controls due to human perception of audio volume also being logarithmic.

Most or all FRC uses for potentiometers should use linear potentiometers so that angle can be
deduced directly from the voltage.

Using Potentiometers with WPILib
WPILib does not contain an explicit class for using potentiometers, as an analog device code should
use the Analog Channel class to interface with the potentiometer. Some teams choose to create a
class in their code which extends Analog Channel which implements the scaling and offset
operations which convert voltages to angles or other real world units used on the robot.
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Analog triggers
An analog trigger is a way to convert an analog signal into a digital signal using resources built into
the FPGA. The resulting digital signal can then be used directly or fed into other digital components
of the FPGA such as the counter or encoder modules. The analog trigger module works by
comparing analog signals to a voltage range set by the code. The specific return types and
meanings depend on the analog trigger mode in use.

Creating an Analog Trigger

Constructing an analog trigger requires passing in a channel number, a module and channel
number, or a created Analog Channel object.

Setting Analog Trigger Voltage Range

The voltage range of the analog trigger can be set in either raw units (0 to 4096 representing -10V to
10V) or voltages. In both cases the value set does not account for oversampling, if oversampling is
used the user code must perform the appropriate compensation of the trigger window before setting.

Filtering and Averaging

The analog trigger can optionally be set to use either the averaged value (output from the average
and oversample engine) or a filtered value instead of the raw analog channel value. A maximum of
one of these options may be selected at a time, the filter cannot be applied on top of the averaged
signal.

Filtering
The filtering option of the analog trigger uses a 3-point average reject filter. This filter uses a circular
buffer of the last three data points and selects the outlier point nearest the median as the output. The
primary use of this filter is to reject datapoints which errantly (due to averaging or sampling) appear
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within the window when detecting transitions using the Rising Edge and Falling Edge functionality of
the analog trigger (see below).

Analog Trigger Direct Outputs

The analog trigger class has two direct types of output:

• In Window - Returns true if the value is inside the range and false if it is outside (above or
below)

• Trigger State - Returns true if the value is above the upper limit, false if it is below the lower
limit and maintains the previous state if in between (hysteresis)

Analog Trigger Output Class
The analog trigger output class is used to represent a specific output from an analog trigger. This
class is primarily used as the interface between classes such as Counter or Encoder and an Analog
Trigger. When used with these classes , the class will create the AnalogTriggerOutput object
automatically when passed the AnalogTrigger object.

This class contains the same two outputs as the AnalogTrigger class plus two additional options
(note these options cannot be read directly as they emit pulses, they can only be routed to other
FPGA modules):

• Rising Pulse - In rising pulse mode the trigger generates a pulse when the analog signal
transitions directly from below the lower limit to above the upper limit. This is typically used
with the rollover condition of an analog sensor such as an absolute magnetic encoder or
continuous rotation potentiometer.

• Falling Pulse - In falling pulse mode the trigger generates a pulse when the analog signal
transitions directly from above the upper limit to below the lower limit. This is typically used
with the rollover condition of an analog sensor such as an absolute magnetic encoder or
continuous rotation potentiometer.
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Operating the robot with feedback from
sensors (PID control)
Without feedback the robot is limited to using timing to determine if it's gone far enough, turned
enough, or is going fast enough. And for mechanisms, without feedback it's almost impossible to get
arms at the right angle, elevators at the right height, or shooters to the right speed. There are a
number of ways of getting these mechanisms to operate in a predictable way. The most common is
using PID (Proportional, Integral, and Differential) control. The basic idea is that you have a sensor
like a potentiometer or encoder that can measure the variable you're trying to control with a motor. In
the case of an arm you might want to control the angle - so you use a potentiometer to measure the
angle. The potentiometer is an analog device, it returns a voltage that is proportional to the shaft
angle of the arm.

To move the arm to a preset position, say for scoring, you predetermine what the potentiometer
voltage should be at that preset point, then read the arms current angle (voltage). The different
between the current value and the desired value represents how far the arm needs to move and is
called the error. The idea is to run the motor in a direction that reduces the error, either clockwise or
counterclockwise. And the amount of error (distance from your setpoint) determines how fast the arm
should move. As it gets closer to the setpoint, it slows down and finally stops moving when the error
is near zero.

The WPILib PIDController class is designed to accept the sensor values and output motor values.
Then given a setpoint, it generates a motor speed that is appropriate for its calculated error value.

Creating a PIDController object

The PIDController class allows for a PID control loop to be created easily, and runs the control loop
in a separate thread at consistent intervals. The PIDController automatically checks a PIDSource
for feedback and writes to a PIDOutput every loop. Sensors suitable for use with PIDController in
WPILib are already subclasses of PIDSource. Additional sensors and custom feedback methods are
supported through creating new subclasses of PIDSource. Jaguars and Victors are already
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configured as subclasses of PIDOutput, and custom outputs may also be created by sub-classing
PIDOutput.

A potentiometer that turns with the turret will provide feedback of the turret angle. The potentiometer
is connected to an analog input and will return values ranging from 0-5V from full clockwise to full
counterclockwise motion of the turret. The joystick X-axis returns values from -1.0 to 1.0 for full left to
full right. We need to scale the joystick values to match the 0-5V values from the potentiometer. This
is done with the expression (1). The scaled value can then be used to change the setpoint of the
control loop as the joystick is moved.

The 0.1, 0.001, and 0.0 values are the Proportional, Integral, and Differential coefficients
respectively. The AnalogChannel object is already a subclass of PIDSource and returns the
voltage as the control value and the Jaguar object is a subclass of PIDOutput.

The PIDController object will automatically (in the background):

• Read the PIDSource object (in this case the turretPot analog input)
• Compute the new result value
• Set the PIDOutput object (in this case the turretMotor)

This will be repeated periodically in the background by the PIDController. The default repeat rate is
50ms although this can be changed by adding a parameter with the time to the end of the
PIDController argument list. See the reference document for details.

Setting the P, I, and D values
The output value is computed by adding the weighted values of the error (proportional term), the
sum of the errors (integral term) and the rate of change of errors (differential term). Each of these is
multiplied by a scaling constant, the P, I and D values before adding the terms together. The
constants allow the PID controller to be tuned so that each term is contributing an appropriate value
to the final output.

The P, I, and D values are set in the constructor for the PIDController object as parameters.

The SmartDashboard in Test mode has support for helping you tune PID controllers by displaying a
form where you can enter new P, I, and D constants and test the mechanism.

Continuous sensors like continuous rotation potentiometers
The PIDController object can also handle continuous rotation potentiometers as input devices. When
the pot turns through the end of the range the values go from 5V to 0V instantly. The PID controller
method SetContinuous() will set the PID controller to a mode where it will computer the shortest
distance to the desired value which might be through the 5V to 0V transition. This is very useful for
drive trains that use have continuously rotating swerve wheels where moving from 359 degrees to 10
degrees should only be a 11 degree motion, not 349 degrees in the opposite direction.
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Controlling the speed of a motor
Controlling motor speed is a a little different then position control. Remember, with position control
you are setting the motor value to something related to the error. As the error goes to zero the motor
stops running. If the sensor (an optical encoder for example) is measuring motor speed as the speed
reaches the setpoint, the error goes to zero, and the motor slows down. This causes the motor to
oscillate as it constantly turns on and off. What is needed is a base value of motor speed called the
"Feed forward" term. This 4th value, F, is added in to the output motor voltage independently of the
P, I, and D calculations and is a base speed the motor will run at. The P, I, and D values adjust the
feed forward term (base motor speed) rather than directly control it. The closer the feed forward term
is, the smoother the motor will operate.

Note: The feedfoward term is multiplied by the setpoint for the PID controller so that it scales
with the desired output speed.

Using PID controllers in command based robot programs

The easiest way to use PID controllers with command based robot programs is by implementing
PIDSubsystems for all your robot mechanisms. This is simply a subsystem with a PIDController
object built-in and provides a number of convenience methods to access the required PID
parameters. In a command based program, typically commands would provide the setpoint for
different operations, like moving an elevator to the low, medium or high position. In this case, the
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isFinished() method of the command would check to see if the embedded PIDController had reached
the target. See the Command based programming section for more information and examples.
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Driver Station Inputs and
Feedback
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Driver Station Input Overview
The FRC Driver Station software serves as the interface between the human operators and the
robot. The software takes input from a number of sources and forwards it to the robot where the
robot code can act on it to control mechanisms.

Input types

The chart above shows the different types of inputs that may be transmitted by the DS software. The
most common input is an HID compliant joystick or gamepad such as the Logitech Attack 3 or
Logitech Extreme 3D Pro joysticks which have been provided in the Kit of Parts since 2009. In
addition to these devices teams can also use the Cypress FirstTouch board to design custom IO
solutions such as buttons potentiometers or other custom input. This custom IO can then be
accessed using either the standard IO methods of the Driver Station class or by using the Enhanced
IO Class if additional customization or advanced features are required. Note that a number of
devices are now available which allow custom IO to be exposed as a standard USB HID device such
as the E-Stop Robotics CCI or the U-HID device.

Driver Station Class

The Driver Station class has methods for reading all of that "Regular I/O" as well as additional
methods to access other information such as the robot mode, battery voltage, alliance color and
team number. Note that while the Driver Station class has methods for accessing the joystick data,
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there is another class "Joystick" that provides a much more user friendly interface to this data. The
DriverStation class is constructed as a singleton by the base class. To get access to the methods of
the DriverStation object constructed by the base class, call DriverStation.getInstance() and either
store the result in a DriverStation object (if using a lot) or call the method on the instance directly.

Robot Mode

The Driver Station class provides a number of methods for checking the current mode of the robot,
these methods are most commonly used to control program flow when using the SimpleRobot base
class. There are two separate pieces of information that define the current mode, the enable state
(enabled/disabled) and the control state(autonomous, operator control, test). This means that exactly
one method from the first group and one method from the second group should always return true.
For example, if the Driver Station is currently set to Test mode and the robot is disabled the methods
isDisabled() and isTest() would both return true.

Battery Voltage

In order to report the robot battery voltage back to the Driver Station software the DriverStation class
runs a task which is constantly measuring and updating the battery voltage using the Analog
Breakout with the jumper installed on the 9201 module in slot 1 of the cRIO. This information can be
queried from the DriverStation class in order to perform voltage compensation or actively manage
robot power draw by detecting battery voltage dips and shutting off or limiting non-critical
mechanisms,
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Alliance

The DriverStation class can provide information on what alliance color the robot is. When connected
to FMS this is the alliance color communicated to the DS by the field. When not connected, the
alliance color is determined by the Team Station dropdown box on the Operation tab of the DS
software.

Location

The getLocation() method of the Driver Station returns an integer indicating which station number the
Driver Station is in (1-3). Note that the station that the DS and controls are located in is not typically
related to the starting position of the robot so this information may be of limited use. When not
connected to the FMS software this state is determined by the Team Station dropdown on the DS
Operation tab.

Team Number

The getTeamNumber method returns an integer indicating the FRC team number the Driver Station
software is currently set to. One example of using this information would be to distinguish at runtime
between multiple robots with identical code but different constants/tuning parameters.

Match Time

This method returns the approximate match time in seconds. Note that this time is derived by
starting a timer at 0 when the enable signal is received for Autonomous and setting the timer to 15
seconds when the enable signal is received for Teleop. This is not an official time sent from the
FMS. Another consequence of this is that if the controller reboots or disconnects from the DS during
the match, then reconnects, this time will be incorrect.
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Custom IO Methods
The DriverStation class also contains methods for accessing custom IO on the Cypress FirstTouch
board in compatibility mode. If a Cypress board is not connected to the DS these inputs can be used
as virtual IO and set with the keyboard and mouse inside the Driver Station software on the I/O tab.
Additional information on accessing this data can be found in the Custom I/O article.
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Joysticks
The standard input device supported by the WPI Robotics Library is a USB joystick or gamepad. The
Logitech Attack 3 joystick provided in the KOP from 2009-2012 comes equipped with eleven digital
input buttons and three analog axes, and interfaces with the robot through the Joystick class. The
Joystick class itself supports five analog and twelve digital inputs which allows for joysticks with more
capabilities such as the Logitech Extreme 3D Pro included in the 2013 KOP which has 4 analog
axes and 12 buttons. Note that the rest of this article exclusively uses the term joystick but can also
be referring to a HID compliant USB gamepad.

USB connection

The joystick must be connected to one of the four available USB ports on the driver station. The
startup routine will read whatever position the joysticks are in as the center position, therefore, when
the station is turned on the joysticks must be at their center position. In general the Driver Station
software will try to preserve the ordering of devices between runs but it is a good idea to note what
order your devices should be in and check each time you start the Driver Station software that they
are correct. This can be done by selecting the Setup tab and viewing the order in the Joystick Setup
box on the right hand side. Pressing a button on a joystick will cause its entry in the table to light up
blue and have asterisks appear after the name. To reorder the joysticks simply click and drag.

New for 2014: The Driver Station will now show up to 6 devices in the Setup window. The first 4
devices will be transmitted to the robot. The additional devices are shown to allow teams to use
one component of a composite device such as the TI Launchpad with FRC software without having
to sacrifice one of the 4 transmitted devices.

Joystick Refresh
When the Driver Station is in disabled mode it is routinely looking for status changes on the joystick
devices, unplugged devices are removed from the list and new devices are opened and added.
When not connected to the FMS, unplugging a joystick will force the Driver Station into disabled
mode. To start using the joystick again plug the joystick back in, check that it shows up in the right
spot, then re-enable the robot. While the Driver Station is in enabled mode it will not scan for new
devices as this is a time consuming operation and timely update of signals from attached devices
takes priority.
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When the robot is connected to the Field Management System at competition the Driver Station
mode is dictated by the FMS. This means that you cannot disable your robot and the DS cannot
disable itself in order to detect joystick changes. A manual complete refresh of the joysticks can be
initiated by pressing the F1 key on the keyboard. Note that this will close and re-open all devices so
all devices should be in their center position as noted above.

Constructing a Joystick Object

The primary constructor for the Joystick class takes a single parameter representing the port number
of the Joystick, this is the number (1-4) next to the joystick in the Driver Station software's Joystick
Setup box (shown in the first image). There is also a constructor which takes additional parameters
of the number of axes and buttons and can be used with the get and set axis channel methods to
create subclasses of Joystick to use with specific devices.

Accessing Joystick Values - Option 1

There are two ways to access the current values of a joystick object. The first way is by using the set
of named accessor methods or the getAxis method. The Joystick class contains the default mapping
of these methods to the proper axes of the joystick for the KOP joystick. If you are using a another
device you can subclass Joystick and use the setAxisChannel method to set the proper mappings if
you wish to use these methods. Note that there are only named accessor methods for 5 of the 6
possible axes and 2 of the possible twelve buttons, if you need access to other axes or buttons, see
Option 2 below.

Joystick axes return a scaled value in the range 1,-1 and buttons return a boolean value indicating
their triggered state. Note that the typical convention for joysticks and gamepads is for Y to be
negative as they joystick is pushed away from the user, "forward", and for X to be positive as the
joystick is pushed to the right. To check this for a given device, see the section below on
"Determining Joystick Mapping".
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Accessing Joystick Values - Option 2

The second way to access joystick values is to use the methods getRawAxis() and getRawButton().
These methods take an integer representing the axis or button number as a parameter and return
the corresponding value. For a method to determine the mapping between the physical axes and
buttons of your device and the appropriate channel number see the section "Determining Joystick
Mapping" below.

Polar methods

The Joystick class also contains helper methods for converting the joystick input to a polar
coordinate system. For these methods to work properly, getX and getY have to return the proper
axis (remap with setChannel() if necessary).
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Determining Joystick Mapping

One way to determine joystick mapping is by writing robot code to display axis and button values via
the dashboard or console, loading it on the robot, then testing the joystick. A simpler way is to
download the Joystick Explorer utility program from the WPILib project which uses the same joystick
code as the Driver's Station and displays the values of all 6 axes and 12 buttons. This program
requires the LabVIEW 2012 runtime (any computer with the Driver Station installed will have it).
Using this utility select your desired device from the drop-down menu then run through the physical
axes and buttons on the joystick and note the corresponding channel number and range. Note that
some features which may seem like buttons may actually show up as axes and that in some cases
these features share an axis (X-Box controller triggers as an example).

WPILib programming

Page 84WPILib programming

http://firstforge.wpi.edu/sf/frs/do/viewRelease/projects.wpilib/frs.joystick_explorer.joystick_explorer


Custom IO - Cypress FirstTouch Module
The Cypress FirstTouch IO module is a board that allows teams to interface to custom IO solutions
such as potentiometers, buttons, switches, encoders, and much more. The methods used with the
Cypress board in standard (compatible) mode may also be used to interface with virtual IO provided
by the DS software if the Cypress board is not attached.

Programming the FirstTouch module
Before using the FirstTouch module the proper software must be loaded onto the board. For
additional details see this article.

Configuring the mode

The Cypress board can be set to one of two modes when used with the FRC Driver Station.
Additionally, the function of each pin and another of other advanced features can be configured if the
board is set to advanced mode. To set the mode of the board, click on the I/O tab of the Driver
Station, then click the Configure button. Select Compatible or Enhanced at the bottom of the dialog,
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and configure the settings in the box above if using Advanced mode (these settings do not apply to
Compatible mode), then click Ok.

Standard Mode

When the Cypress Board is in standard/compatible IO mode the data it provides is accessed through
the Driver Station class. Each of the three types of IO requires a parameter of the channel number
and digital outputs require a value. Valid channels for the IO types are:

• Analog: 1-4
• Digital Input: 1-8
• Digital Output: 1-8

Virtual IO

The same Driver Station methods can be used to interact with Virtual IO if no Cypress Board is
present. On the IO tab of the Driver Station there are controls for each of the 8 Digital Inputs (click to
toggle), indicators for the 8 Digital Outputs, and controls for the 4 Analog Inputs (click and drag or
type in the box to set).

Enhanced Mode

If the Cypress board is set to enhanced mode, you must use the DriverStationEnhancedIO class to
set and retrieve values. This class has additional methods to handle configuration of the board in
enhanced mode and getting and setting values associated with the advanced features such as PWM
generation and quadrature decoding.
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Configuration
The Enhanced IO configuration can be set either using the IO tab of the Driver Station as shown
above or by using the methods in the DriverStationEnhancedIO class. Changes made in the Driver
Station will persist across runs of the DS software by using a configuration file, but will not persist
across different machines even if the same Cypress board is used. Configuration set in the robot
code will override the configuration loaded from the file by the DS but may not override any changes
that are made on the IO tab after the robot has linked to the DS.

Data

The Enhanced I/O module has a very powerful and expanded set of capabilities beyond just simple
analog and digital I/O. The table above details the available options.
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Displaying Data on the DS - Dashboard
Overview
Often it is desirable to get feedback from the robot back to the drivers. The communications protocol
between the robot and the driver station includes provisions for sending program specific data. The
program at the driver station that receives the data is called the dashboard.

Network Tables - What is it?
Network Tables is the name of the client-server protocol used to share variables across software in
FRC. The robot acts as the Network Tables server and software which wishes to communicate with
it connects as clients. The most common Network Tables client is the dashboard.

Smart Dashboard
The term Smart Dashboard originally referred to the Java dashboard client first released in 2011.
This client used the Network Tables protocol to automatically populate indicators to match the data
entered into Network Tables on the robot side. Since then the term has been blurred a bit as the
LabVIEW dashboard has also converted over to using Network Tables. Additional information on
SmartDashboard can be found in the SmartDashboard chapter.
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Robot to driver station
networking

WPILib programming

Page 89WPILib programming



Writing a simple NetworkTables program in
C++ and Java with a Java client (PC side)
NetworkTables is an implementation of a distributed "dictionary". That is named values are created
either on the robot, driver station, or potentially an attached coprocessor, and the values are
automatically distributed to all the other participants. For example, a driver station laptop might
receive camera images over the network, perform some vision processing algorithm, and come up
with some values to sent back to the robot. The values might be an X, Y, and Distance. By writing
these results to NetworkTable values called "X", "Y", and "Distance" they can be read by the robot
shortly after being written. Then the robot can act upon them.

NetworkTables can be used by programs on the robot in either C++, Java or LabVIEW and is built
into each version of WPILib.
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Using NetworkTables from a Java robot program

NetworkTables programs on the robot are easiest to write. The program simply reads or writes
values from within the program. The instance of NetworkTables is automatically created by the
WPILib runtime system. This example is the simplest robot program that can be written that
continuously writes pairs of values (X, and Y) to a table called "datatable". Whenever these values
are written on the robot, they can be read shortly after on the desktop client.

1. The variable "table" is of type NetworkTable. NetworkTables are hierarchical, that is tables
can be nested by using their names for representing the position in the hierarchy.

2. The table is associated with values within the hierarchy, in this case the path to the data is
/datatable/X and /datatable/Y.

3. Values are written to the "datatable" NetworkTable. Each value will automatically be
replicated between all the NetworkTable programs running on the network.

When this program is run on the robot and enabled in Teleop mode, it will start writing incrementing
X and Y values continuously, updating them 4 times per second (every 0.25 seconds).
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Using Network Tables from a C++ robot program

NetworkTables programs on the robot are easiest to write. The program simply reads or writes
values from within the program. The instance of NetworkTables is automatically created by the
WPILib runtime system. This example is the simplest robot program that can be written that
continuously writes pairs of values (X, and Y) to a table called "datatable". Whenever these values
are written on the robot, they can be read shortly after on the desktop client.

1. The variable "table" is of type NetworkTable. NetworkTables are hierarchical, that is tables
can be nested by using their names for representing the position in the hierarchy.

2. The table is associated with values within the hierarchy, in this case the path to the data is
/datatable/X and /datatable/Y.

3. Values are written to the "datatable" NetworkTable. Each value will automatically be
replicated between all the NetworkTable programs running on the network.

When this program is run on the robot and enabled in Teleop mode, it will start writing incrementing
X and Y values continuously, updating them 4 times per second (every 0.25 seconds).
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Using the client version of NetworkTables on a desktop computer

The NetworkTables libraries are built into all versions of robot-side WPILib. You can set values from
the robot in C++, Java or LabVIEW with simple put and get methods. To use it on a laptop (usually
the driver station computer), there are several options:

1. a client library that you can reference from Java programs that you write.
2. from plugins that you write for the SmartDashboard (it's included there)

The Java library is part of the NetBeans Java plugin installation and can be found in the <user-
directory>/sunspotfrcsdk/desktop-lib directory as shown here.

For C++ WindRiver installations the .jar files are located in the C:\WindRiver\WPILib\desktop-
lib directory.
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Setting up NetBeans to create the client-side (laptop/desktop
computer) program

To write a program that runs on your PC that uses NetworkTables the Java project must reference
the JAR file from the NetBeans installation shown above. The project has to reference the
networktables-desktop.jar file. This is an example of doing it with NetBeans but any IDE will have a
way of adding .JAR files to a project. In this example the .jar file was added to the project properties.

Note: this is not necessary for a robot program since NetworkTables is built into WPILib. You
simply have to add the necessary java import statements or C++ #includes for the
NetworkTable classes that are used in the program.
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The client (laptop) side of the program

This program is the simplest program that you can write on a PC to use NetworkTables. It
continuously reads the values from robot example in the previous step.

1. Set NetworkTables to client mode (not on the robot) and specifiy the IP address of the robot.
2. Create a NetworkTable variable ("table") that is associated with the "datatable"

NetworkTable.
3. Loop continuously and sleep for 1 second each time through the loop.
4. Read the X and Y values from the /datatable NetworkTable that was written on the robot in

the previous program and print the values. The program output is shown below.
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Program output from the simple client example

This output is from the NetBeans "output" window. This is the results from the System.out.println()
method from the previous program that is running on a desktop computer retrieving values written on
the robot from the earlier Robot program.

Viewing the NetworkTables variables in TableViewer

There is a diagnostic tool called TableViewer that will display the current state of the NetworkTables
table. In this case, running it will show the current values of all the variables in the variables created
in this example are shown in the red box above. TableViewer is located in the sunspotfrcsdk folder
for NetBeans intstalls or in the C:\WindRiver\Workbench\WPILib folder for C++ installs.
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Receiving notifications of changes to a NetworkTable

A PC or Robot program can receive notifications of changes to a NetworkTable. This example is a
client-side (PC) program, but the same concepts will work on a robot program. These notifications
are received asynchonously as the new values are received by the NetworkTable library.

1. Connect to the NetworkTable server using the same technique as in the previous example.
2. Register this class as a ITableListener. Changes to the "datatable" will be reported to this

class through the "valueChanged" callback method (below)
3. Sleep for 100 seconds while values are reported. The program could do anything here, but in

this simple example, it only waits for 100 seconds while waiting for values to arrive.
4. This valueChanged method is called whenever there are changes or additions to the

NetworkTable "datatable". The boolean value bln will be true if this is a new value or false if it
is just an update to a previously reported variable. The Object is the new value that has been
received. The output from this program is shown in the next step.
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Results of running the client-side (PC) TableListener example

In this screen image the values returned from the TableListener example are shown. Notice that at
the top of the output X and Y are returned with their respective values and "true" for the boolean
value. This indicates that they are new values. In all the other cases, the boolean value is "false"
indicating that it is just an update to a previously reported value.
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Using NetworkTables with RoboRealm

RoboRealm is a program that does client-side (PC) vision processing. RoboRealm can connect to a
camera on a robot and do real-time tracking of field targets and sending the results back to the robot.
In the past this required writing custom networking code for the PC to robot communications.
RoboRealm now has a built-in NetworkTables client and this allows the RoboRealm program to send
values directly back to the robot via some shared variables.

For further information see: http://www.roborealm.com/help/Network_Tables.php

WPILib programming

Page 99WPILib programming

http://www.roborealm.com/help/Network_Tables.php


Using TableViewer to see NetworkTable values
TableViewer is a program to help debug NetworkTables applications. It acts as a NetworkTables
client and allows the viewing of all the keys and associated values in a tabular format. You can use
this to quickly see the value of a variable or set a value for a variable. This is a java program making
it platform independent - it can run anywhere that the java runtime is installed.

Starting TableViewer

TableViewer is a java application and is distributed as a .jar file. It is named with the version number,
so the actual name you'll see will be dependent on the version of the build. It should be located in
the tools directory in either the C++ or Java installation. In the case of C++ it will be in C:\WindRiver\
WPILib and in Java it will be in <user-home-directory>/sunspotfrcsdk/tools, where the <user-home-
directory> is the operating system installed users home directory. On some operating systems this
can be started by simply double-clicking on the TableViewer.jar file using a file browser. On other
systems it might have to be explicitly run from a command line by entering, "java -jar
TableViewer.jar". The TableViewer application

Once it is running, enter the host IP address of the robot. This is the FRC standard IP naming
convention, 10.TE.AM.2 where TE.AM are replaced with the team number. For example it would be
10.1.90.2 for Team 190.
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Viewing Table Values

The TableViewer will start up and show all the keys (variable names) and values for those keys. In
addition it shows a sequence number which is an internal NetworkTables field used to determine if
values are updated and need refreshing. The sequence number increments every time the value of a
NetworkTable variable changes. The values wrap around at 65535.

The table rows can be sorted by either the Key, Value or Sequence Number by clicking on the
column heading in the table.
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Using NetworkTables with RoboRealm
RoboRealm is a desktop vision application that you run on your driver station and can connect to a
camera on your robot, do a set of vision processing steps that you define, then send the results back
to the robot using NetworkTables. Using RoboRealm is easy since you don't need a robot to try it. In
fact, you can write programs with just images that were taken such as those that come with any of
the three language distributions. For Java and C++, installing the 2014 Sample Vision program will
include a bunch of pictures taken with an Axis camera of the actual field that you can use to make
sure your vision algorithm works.

There is a card included with your kit of parts that contains instructions for getting RoboRealm.

The idea is that you create a sequence of image processing steps with RoboRealm that create the
results in variables. Then send those variables to the robot using NetworkTables. The robot gets the
results and uses them to control the robot behavior such as aiming, driving to a target, setting
shooter speed, etc.

Creating the RoboRealm program

Create the RoboRealm program using the image processing elements shown in the "Contents" tab
(1) on the left side of the interface. The program will appear in the bottom window (2). You can drag
images from Windows Explorer into the Image window (3) to make sure that your algorithm works
well and is repeatable for all the positions that the robot might be in.

By clicking on any of the steps in the program window, you can see the result of that processing step
to make sure it's doing what you expect. Many of the steps can create variables with the results of
that step. For example, the Blob Filter step shown has a checkbox to create an array of information
for the detected blobs (4).
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Interfacing with NetworkTables

Variables that are created in RoboRealm can be sent back to the robot using NetworkTables. To do
that add a "Network_Tables" step (1) to your RoboRealm program and add the variables you defined
to be sent to the robot (2). Set the "Prefix" to "//" (3) and the "Hostname" to the value of your robot
network address (4) and the port to 1735 (5).

In this case it will send an array of values back to the robot for each of the detected blobs.

WPILib programming

Page 103WPILib programming



Retrieving the values on the robot

Here's a Java program that retrieves those values on the robot and opens or closes a claw (just as a
test) depending on whether there is at least one element in the array of values sent back. The steps
to make this work are:

1. Declare the NetworkTable that will contain the values
2. Get an instance of the table and make sure everything is initialized
3. Create a new NumberArray object that will hold the results
4. Retrieve the array elements (values) for the NetworkTable variable called "HORIZONTAL"

that was exported by RoboRealm
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Now whenever the size of the array changes and contains at least one element the method
setClaw(-1) will be called. Whenever the size changes and there are no elements in the array,
setClaw(1) is called.
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